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Abstract
We show how a large class of sufficient conditions for the existence of bound
states, in non-positive central potentials, can be constructed. These sufficient
conditions yield upper limits on the critical value, g(�)

c , of the coupling constant
(strength), g, and of the potential, V (r) = −gv(r), for which a first �-wave
bound state appears. These upper limits are significantly more stringent than
hitherto known results.

PACS numbers: 03.65.−w, 03.65.Ge, 02.30.Rz

1. Introduction

There exist in the literature several necessary conditions for the existence of at least one �-wave
bound state in a given central potential. These necessary conditions yield lower limits on the
critical value, g(�)

c , of the coupling constant (strength), g, and of the potential, V (r) = −gv(r),
for which a first �-wave bound state appears.

In 1976, Glaser et al obtained a strong necessary condition for the existence of bound
states in an arbitrary central potential in three dimensions (h̄2/(2m) = 1) [1],

(p − 1)p−1�(2p)

(2� + 1)2p−1pp�2(p)

∫ ∞

0

dr

r
[r2V −(r)]p � 1 (1)

where V −(r) = max(0,−V (r)) is the negative part of the potential and with the restriction
p � 1. This inequality is nontrivial provided that the potential V (r) is less singular than the
inverse square radius at the origin and that it vanishes asymptotically faster than the inverse
square radius, say (for some positive ε)

lim
r→0

[r2−εV (r)] = 0 (2)
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lim
r→∞[r2+εV (r)] = 0. (3)

We assume throughout that the potentials satisfy relations (2) and (3) and that they are piecewise
continuous for r ∈ ]0,∞[. The lower limit on g(�)

c obtained from (1) is actually very accurate
as has been demonstrated in several examples (see for example [1–3] as well as section 3).

Recently other strong necessary conditions have also been obtained [3],

2

(2� + 1)2

∫ ∞

0
dx x−2�V −(x)

∫ x

0
dy y2�+2V −(y) � 1 (4)

6

(2� + 1)3

∫ ∞

0
dx x−2�V −(x)

∫ x

0
dy yV −(y)

∫ y

0
dz z2�+2V −(z) � 1. (5)

As shown in [3], these two inequalities, (4) and (5), are natural extensions of the Bargmann–
Schwinger necessary condition [4, 5] (first obtained by Jost and Pais [6])

1

2� + 1

∫ ∞

0
dx xV −(x) � 1. (6)

Actually inequalities (6), (4) and (5) are the first members of a sequence of necessary conditions
which yield a monotonic sequence of lower limits on the critical value of the strength of the
potential, g(�)

c , which converges to the exact critical strength [3]. This remark implies that
inequality (5) yields stronger restriction than relation (4). The complexity of each member of
this sequence of necessary conditions becomes rapidly important and only relations (4) and
(5) can be easily used. It has been shown, with some test potentials, that relation (5) can be
better than relation (1), especially for � = 0 (see tests performed in [3] and in section 3).

Other necessary conditions for the existence of bound states can be found in the literature
(see for example [7, 8] and for reviews see [9–11]), but none, in general, yields stronger
restrictions than (1) and (5).

Few sufficient conditions for the existence of an �-wave bound state in a central potential,
yielding upper limits on g(�)

c , can be found in the literature. Let us mention two sufficient
conditions found by Calogero in 1965 [12, 13]∫ a

0
dr r|V (r)|(r/a)2�+1 +

∫ ∞

a

dr r|V (r)|(r/a)−(2�+1) > 2� + 1 (7)

and

a

∫ ∞

0
dr|V (r)|[(r/a)2� + (r/a)−2�a2|V (r)|]−1 > 1. (8)

These two conditions apply provided the potential is nowhere positive, V (r) = −|V (r)|; in
both of them a is an arbitrary positive constant, and of course the most restrictive conditions
are obtained by minimizing the left-hand sides of (7) and (8) over all positive values of a.

Few other sufficient conditions for the existence of bound states can be found in the
literature (see [2, 3, 14]), but they are either quite complicated or less stringent than (7)
and (8).

In this paper, we obtain a strong sufficient condition for the existence of bound states
yielding accurate restrictions on the critical strength g(�)

c which improve significantly the
restrictions provided by relations (7) and (8).

2. Sufficient condition and upper limit on the critical strength

The idea used to derive the upper limit on g(�)
c is to transform the standard eigenvalue problem

obtained with the time independent Schrödinger equation, where the eigenvalues are the
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eigenenergies, into an eigenvalue problem where the eigenvalues are the critical coupling
constants. These critical values of the strength of the potential correspond to the occurrence
of an eigenstate with vanishing energy.

Following Schwinger [5] (see also [15]), we consider the zero energy Schrödinger equation
that we write in the form of an integral equation incorporating the boundary conditions

u�(r) = −
∫ ∞

0
dr ′ g�(r, r

′)V (r ′)u�(r
′) (9)

where g�(r, r
′) is the Green’s function of the kinetic energy operator and is explicitly given by

g�(r, r
′) = 1

2� + 1
r�+1
< r−�

> (10)

where r< = min[r, r ′] and r> = max[r, r ′]. An important technical difficulty appears if the
potential possesses some changes of sign (see relation (11)). This is overcome in the derivation
of necessary conditions, or of upper bounds on the number of bound states, by considering the
negative part of the potential instead of the potential itself (V (r) → V −(r) = max(0,−V (r))).
Indeed, the potential V −(r) is more negative than V (r) and thus a necessary condition for
the existence of an �-wave bound state in V −(r) is certainly a valid necessary condition for
V (r). This procedure can no longer be used to obtain sufficient conditions. For this reason
we consider potentials that are nowhere positive, V (r) = −gv(r), with v(r) � 0.

To obtain a symmetrical kernel we now introduce a new wavefunction as

φ�(r) = |V (r)|1/2u�(r). (11)

Equation (9) becomes

φ�(r) = g

∫ ∞

0
dr ′ K�(r, r

′)φ�(r
′) (12)

where the symmetric kernel K�(r, r
′) is given by

K�(r, r
′) = v(r)1/2g�(r, r

′)v(r ′)1/2. (13)

Relation (12) is thus an eigenvalue problem and, for each value of �, the smallest characteristic
number is just the critical value g(�)

c . The other characteristic numbers correspond to the
critical values of the strength for which second, third, . . . , �-wave bound states appear. The
kernel (13) acting on the Hilbert space L2(R) is a Hilbert–Schmidt operator for the class of
potentials defined by (2) and (3). Thus this kernel satisfies the inequality∫ ∞

0

∫ ∞

0
dx dy K�(x, y)K�(x, y) < ∞. (14)

Consequently the eigenvalue problem (12) always possesses at least one characteristic number
[16, pp 102–6] (in general, this problem has an infinity of characteristic numbers). Note also
that the kernel (13) is the so-called Birman–Schwinger kernel [5, 15].

Now we use the theorem (see for example [16, pp 118–9] which states that, for a symmetric
(positive) Hilbert–Schmidt kernel, we have the variational principle

max
ϕ

[∫ ∞

0

∫ ∞

0
dx dy K�(x, y)ϕ(x)ϕ(y)

]
= 1

g
(�)
c

(15)

for ϕ(r) satisfying∫ ∞

0
dr ϕ(r)2 = 1. (16)
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The maximal value is reached for ϕ(x) = φc
�(x), where φc

�(x) is the eigenfunction associated
with g(�)

c . Consequently for an arbitrary normalized function, f (x), we obtain the following
upper limit on g(�)

c :

g(�)
c �

[∫ ∞

0

∫ ∞

0
dx dy K�(x, y)f (x)f (y)

]−1

. (17)

To apply the above theorem, we simply choose

f (r) = A[r2p−1v(r)p]1/2 p > 0 (18)

where A is the normalization factor. With the choice (18), the upper limit (17) reads

g(�)
c � L

∫ ∞

0
dx F(2p − 1; x)

[∫ ∞

0
dx F(p; x)x−L

∫ x

0
dy F(p; y)yL

]−1

(19)

with F(q; x) = xqv(x)(q+1)/2 and L = � + 1/2.
We do not consider other choices for the function f (r) here since, as shown in

section 3, relation (19) is already very accurate. We just mention that another possible
choice for monotonic potentials is f (r) = A[v(r)(v(0) − v(r))p]1/2. We have verified with
an exponential potential, see (22), that this choice yields a slight improvement.

Obviously, the sufficient condition for the existence of an �-wave bound state, from which
the upper limit (19) on g(�)

c is obtained, reads∫ ∞

0
dx F̃ (p; x)x−L

∫ x

0
dy F̃ (p; y)yL

{
L

∫ ∞

0
dx F̃ (2p − 1; x)

}−1

� 1 (20)

with F̃ (q; x) = xq |V (x)|(q+1)/2,L = � + 1/2 and p > 0.

3. Tests

In this section, we propose to test the accuracy of the upper limit (19) with four potentials: a
square well potential

V (r) = −gR−2θ(1 − r/R) (21)

an exponential potential

V (r) = −gR−2 exp(−r/R) (22)

a Yukawa potential

V (r) = −g(rR)−1 exp(−r/R) (23)

and the shifted truncated inverse square (STIS) potential

V (r) = −g(R + r)−2 for 0 � r � αR

= 0 for r > αR. (24)

In these potentials, the radius R is arbitrary (but positive) and α is an arbitrary positive number.
The minimization of the upper limit (19) over the positive values of p can be performed

analytically only for the square well potential. We find

g(�)
c � L(

√
L + 1 + 1)2. (25)

Comparisons between the exact value of the critical coupling constants of the potentials,
g(�)

c , the previously known upper and lower limits reported in section 1 and the new upper
limit (19) are given in tables 1, 2 and 3 for various values of � and for the potentials (21)–(23).
These comparisons clearly show that the new upper limit is very cogent as well as the lower



Sufficient conditions for the existence of bound states 6691

Table 1. Comparison between the exact values of the critical coupling constant g
(�)
c of the square

well potential (21) for various values of � and the lower limits on g
(�)
c obtained with relations

(1), (5) and (6), called respectively g
(�)
GGMT, g

(�)
B and g

(�)
BS and the upper limits obtained with the

formulae, (7), (8) and (19), called respectively, g
(�)
C1 , g

(�)
C2 and g

(�)
New.

� g
(�)
BS g

(�)
B g

(�)
GGMT g

(�)
c g

(�)
New g

(�)
C1 g

(�)
C2

0 2 2.4662 2.3593 2.4674 2.4747 2.6667 4
1 6 9.8132 9.1220 9.8696 9.9934 11.719 10.068
2 10 19.895 18.454 20.191 20.604 25.413 20.895
3 14 32.383 30.245 33.217 34.099 43.570 35.424
4 18 47.064 44.425 48.831 50.357 66.089 53.519
5 22 63.788 60.947 66.954 69.295 92.909 75.114

Table 2. Same as for table 1 but for the exponential potential (22). In the column p, we report the
values of the variational parameter p which optimize the upper limit (19).

� g
(�)
BS g

(�)
B g

(�)
GGMT g

(�)
c g

(�)
New g

(�)
C1 g

(�)
C2 p

0 1 1.4422 1.4383 1.4458 1.4467 1.6755 1.5442 1.4686
1 3 6.8546 7.0232 7.0491 7.0584 9.7188 7.7262 2.4313
2 5 15.257 16.277 16.313 16.334 24.724 19.794 3.4103
3 7 26.265 29.218 29.259 29.289 46.985 37.791 4.4015
4 9 39.616 45.849 45.893 45.932 76.586 61.758 5.3874
5 11 55.120 66.173 66.219 66.264 113.55 91.708 6.3804

Table 3. Same as for table 1 but for the Yukawa potential (23). In the column p, we report the
values of the variational parameter p which optimize the upper limit (19).

� g
(�)
BS g

(�)
B g

(�)
GGMT g

(�)
c g

(�)
New g

(�)
C1 g

(�)
C2 p

0 1 1.6689 1.6643 1.6798 1.6826 2.0505 1.6810 1.7217
1 3 8.5999 9.0384 9.0820 9.1039 13.390 10.706 3.1281
2 5 19.553 21.839 21.895 21.937 35.255 28.374 4.5302
3 7 33.931 40.074 40.136 40.194 67.914 54.819 5.9344
4 9 51.368 63.744 63.809 63.880 111.42 90.071 7.3404
5 11 71.615 92.850 92.918 92.998 165.80 134.14 8.7481

Table 4. Same as for table 1 but for the STIS potential (24) and � = 0. In the column p, we report
the values of the variational parameter p which optimize the upper limit (19).

α g
(0)
BS g

(0)
B g

(0)
GGMT g

(0)
c g

(0)
New g

(0)
C1 g

(0)
C2 p

0.1 227.22 282.11 269.84 282.26 283.12 306.01 440.67 1.2329
0.5 13.864 17.613 16.842 17.626 17.683 19.311 24.664 1.2608
1 5.1774 6.7253 6.4307 6.7319 6.7550 7.4520 8.6588 1.2889
5 1.0434 1.4837 1.4214 1.4875 1.4939 1.7201 1.5799 1.4159
10 0.67168 1.0066 0.96638 1.0107 1.0156 1.1998 1.0304 1.5004
50 0.33882 0.58085 0.56233 0.58684 0.59085 0.74673 0.59855 1.7633

limit (1) obtained by Glaser et al. We have also performed other tests, that we do not report
here, with nonmonotonic potentials and the results obtained are quite similar to those reported
in these tables.

In table 4, we present the same comparison for the STIS potential but for � = 0. For
this potential, the critical coupling constant depends on α. The value of g(0)

c is obtained, for
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given α, by solving the following equation [10],

λ ln(1 + α) + 2 arctan(λ) = 2π (26)

with λ =
√

4g
(0)
c − 1. For all values of α the results obtained with the new upper limit are

again very stringent compared to previously known limits.

4. Conclusions

The sufficient condition (20) proposed in this paper yields the upper limit (19) on g(�)
c which

is analogous to the lower limit obtained three decades ago by Glaser et al [1]. The upper limit
applies provided that the potential is nowhere positive, is less singular than the inverse square
radius at the origin and that it vanishes asymptotically faster than the inverse square radius.
We could use the method proposed in [17] to consider potentials with some positive parts but
the result would then be much less neat and less interesting.

The method we use to derive the upper limit on the critical strength g(�)
c is quite general

and other (possibly more complicated) families of upper limits yielding (possibly) stronger
restrictions on g(�)

c could also be obtained. Indeed, the method is based on a variational
principle for which a trial zero energy wavefunction is needed. There is no limitation on the
accuracy of such a trial function, which implies that there is, in principle, no limitation on
the accuracy of the upper limit on g(�)

c derived with this procedure. In this paper, we have
proposed in section 2 a compromise between accuracy and simplicity of the final formula. The
accuracy of the upper limit on g(�)

c was then tested in section 3 with some typical potentials.
Clearly, the upper limit (19) proposed in this paper improves significantly the restriction on
the possible values of g(�)

c obtained with previously known upper limits.
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